EC'24 Tutorial on Transaction Fee Mechanism Design

Organizers:

Hao Chung, Matheus V. X. Ferreira, Yotam Gafni, and Aviv Yaish

Agenda

- Lecture 1 (20 mins): TFMs for a single block
- Lecture 2 (20 mins): Dynamics TFMs
 - Break (30 mins)
- Lecture 3 (20 mins): Extensions to the TFM frameworks
- Panel discussion (30 mins):
 - Mallesh M. Pai (Rice University and Consensys)
 - Tim Roughgarden (Columbia University and a16z crypto)
 - Noam Nisan (Hebrew University of Jerusalem and Starkware)

Lecture 1: TFMs for a Single Block

- What are blockchains and TFMs?
- TFM's desiderata
- Limitations in the single-block setting
- What can cryptography do for TFM design?

Blockchain is a public computer

4

A transaction can be as simple as coin transfer

③ Block:	▼ 20120974 1 Block Confirmation
③ Timestamp:	① 17 secs ago (Jun-18-2024 08:17:47 PM +UTC) ♂ Confirmed within 30 secs
	▶ Transfer 4.19705488 ETH To 0x0f967c884545d1b295aEf0281eE49688CA7255a4
③ Sponsored:	
③ From:	0xFd90a4bF5892dA15F863e8C385A789e583F2117D

0x0f967c884545d1b295aEf0281eE49688CA7255a4

? To:

A transaction can also be a complex program

```
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.0 <0.9.0;</pre>
/// @title Voting with delegation.
contract Ballot {
    // This declares a new complex type which will
    // be used for variables later.
    // It will represent a single voter.
    struct Voter {
        uint weight; // weight is accumulated by delegation
        bool voted; // if true, that person already voted
        address delegate; // person delegated to
        uint vote; // index of the voted proposal
    // This is a type for a single proposal.
    struct Proposal {
        bytes32 name; // short name (up to 32 bytes)
        uint voteCount; // number of accumulated votes
```

A transaction can also be a complex program

```
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.0 <0.9.0;</pre>
/// @title Voting with delegation.
contract Ballot {
   // This declares a new complex type which will
     be
            programs on blockchains are
   struc
             known as "smart contracts"
```

```
// This is a type for a single proposal.
struct Proposal {
    bytes32 name; // short name (up to 32 bytes)
    uint voteCount; // number of accumulated votes
}
```

This computer is updated block-by-block

The miner packs a bunch of transactions into a block

Transaction fee mechanism is like an auction

What counts as good TFMs?

Bitcoin: first price auction

- 1. Top k bids are confirmed
- 2. Pay your own bid
- 3. All payment goes to the miner

Encourage untruthful bidding

Truthful bidding by classical mechanisms

We can run 2nd price auction

Classical Mechanisms Fail!

Three desired properties

UIC (user incentive compatibility)

A user's best strategy is to bid truthfully

MIC (miner incentive compatibility)

Miner's best strategy is to implement the mechanism honestly

c-SCP (c-side-contract-proofness)

A coalition of the miner and at most c users doesn't want to deviate

New challenges in decentralized context!

Three desired properties

UIC (user incentive compatibility)

A user's best strategy is to bid truthfully

MIC (miner incentive compatibility)

Miner's best strategy is to implement the mechanism honestly

c-SCP (c-side-contract-proofness)

A coalition of the miner and at most c users doesn't want to deviate

2nd price auction is UIC, but not MIC and 1-SCP1st price auction is MIC and c-SCP, but not UIC

New challenges

in decentralized context!

Ethereum's EIP-1559 achieves all properties assuming infinite block size

Uncongested \Longrightarrow posted-price auction

- All bids \geq posted price r are confirmed, and pay r
- miner gets nothing; all payment is burnt

Without burning, miner-user coalition can bypass the price r

Dream mechanism is impossible!

Theorem

Suppose the block size is finite.

No non-trivial TFM can satisfy UIC and 1-SCP at the same time.

Zero miner revenue is inherent

Theorem

For any TFM that satisfies UIC and 1-SCP,

miner revenue must be zero.

Burning in EIP1559 is necessary!

Strategy Space in Plain Model

After seeing others' bids, a miner can

- inject fake bids
- create a block arbitrarily

After seeing others' bids, a user can

- bid untruthfully
- inject fake bids

Strategy Space in MPC-assisted Model

After seeing others' bids, a miner can

- inject fake bids
- create a block arbitrarily

After seeing others' bids, a user can

- bid untruthfully
- inject fake bids

Posted-price with random selection

- All bids \geq posted-price r are eligible
- Randomly choose k eligible bids to confirm
- Each confirmed bid pays r
- All payments are burnt

This mechanism is UIC + MIC + 1-SCP

MPC-Assisted Model

Multiple miners jointly run multiparty computation (MPC)

A user secret-shares its bid, and sends each share to each miner

Take away from lecture 1

- A blockchain is a public computer
- Transaction fee mechanisms (TFMs) allocate block space
- New design feature: burning
- New challenge: miner and miner-user deviation
- In plain model: UIC + 1-SCP ⇒ trivial mechanism

Some simplifications in lecture 1

- Focus on a single block
 - In practice: multiple block in the long term (lecture 2)
- All transactions have equal size
 - In practice: different size ("gas" model in Ethereum)
- Transaction order does not matter in the block
 - In practice: order matters! (lecture 3)
- A single miner fully controls one block
 - Depend on protocols, e.g. MPC-assisted mechanism (end of this lecture) or proposer-builder separation (lecture 3)

backup: Ethereum's EIP-1559

- base fee tip

 Each bid specifies (r, t)
- All bids \geq base-fee r are eligible
- Miner confirms up to k eligible bids with highest tips
- Each confirmed bid pays r + t
- Miner gets all the tips, the base fee is burnt

