EC'24 Tutorial on Transaction Fee Mechanism Design

Matheus V. X. Ferreira

ACM Conference on Economics & Computation June 25, 2024

Agenda

- Lecture 1 (20 mins): TFMs for a single block
- Lecture 2 (20 mins): Dynamics TFMs
 - Break (30 mins)
- Lecture 3 (20 mins): Extensions to the TFM frameworks
- Panel discussion (30 mins):
 - Mallesh M. Pai (Rice University and Consensys)
 - Tim Roughgarden (Columbia University and a16z crypto)
 - Noam Nisan (Hebrew University of Jerusalem and Starkware)

Why dynamic mechanism?

- User experience: users might be willing to wait for future block space
- [Example] In each round, a second-price auction allocates a single item for sale.
 - Alice is patient and her value is 6.
 - The first block of the bids is {4, 5}.
 - What should Alice bid?
 - Second block the bids are {1, 2}.
 - If she would be equally happy with waiting for the second block she overpaid by 3.

Related work (more on the tutorial website)

- Dynamical Analysis of the EIP-1559 Ethereum Fee Market, 2021 [S. Leonardos, B. Monnot, D. Reijsbergen, E. Skoulakis, G. Piliouras]
- Dynamic Posted-Price Mechanisms for the Blockchain Transaction-Fee Market, 2021 [M.V.X. Ferreira, D.J. Moroz, D.C. Parkes, M. Stern]
- Dynamic Transaction Fee Mechanism Design, 2024 [M. Pai, M. Resnick]
- Serial Monopoly on Blockchains, 2023 [N. Nisan]
- Competitive Revenue Extraction from Time-Discounted Transactions in the Semi-Myopic Regime, 2024 [Y. Gafni, A. Yaish]

Digital Transaction

- Intermediaries: Visa, Mastercard, Amex, ACH
- Great user experience, but arguably expensive for merchants

\$0.10 fee

Transaction outcome:

• Rejected (insufficient funds, etc...) or confirmed at \$0.10

Digital Transaction on Blockchains

Transaction outcome:

- Rejected (insufficient funds, etc...), confirmed at \$0.10, or delayed:
 - Either eventually confirmed for \$0.10, or
 - It cannot abort and you increase the fee to \$0.15 to speed up the confirmation.

Model

- In each round
 - N ``identical'' items for sale
 - A new set of buyers arrive
 - A mechanism allocates the items to at most N buyers
 - Any unallocated buyer stays for the next round (or timeout)

Challenge: The mechanism designer has weak commitment power because multiple `pseudonymous' miners/sequencers/proposers take turns to implement the allocation rule.

Objective

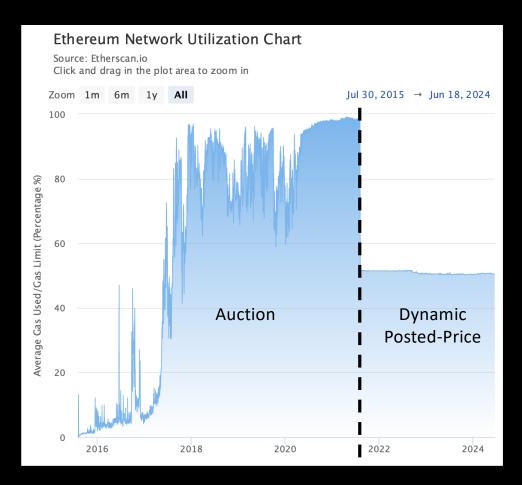
Maximize Welfare

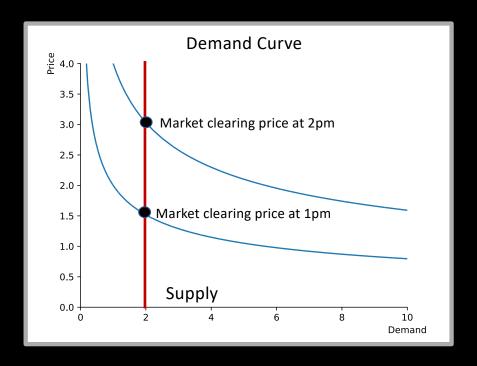
(i.e., allocate space to who benefits the most)

Simplicity

(e.g., Incentive Compatible)

Posted-price provides simplicity


Simplicity ...


Source: 3 Gwei | Ethereum Gas Tracker | Etherscan

Accessed: 06/19/2024

Welfare

How to dynamically price block space given future demand is unknown?

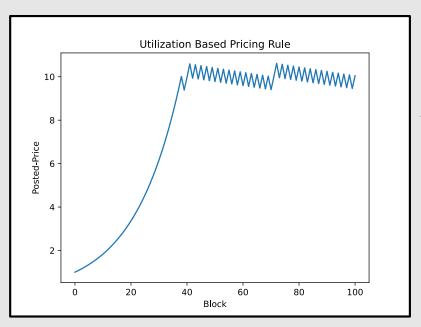
Approach (EIP 1559 [Buterin et al., '19])

- 1. Each block contains a posted-price: $Price_t$.
- 2. Miner can **ONLY** include transactions with a bid above $Price_t$.
- 3. Bidder pays $Price_t$.
- 4. Compute the posted-price for next block using a pricing rule

Pending Transactions				
TX ID	Sender	Receiver	Value	Budget
01	Alice	Bob	10	1
02	Charlie	David	15	0.01
03	Bob	Charlie	1	0.5

Pricing Rules

Utilization-based (EIP-1559)


Utilization-based rule

$$Price_{t+1} = Price_t (1 + \alpha(Utilization - Target))$$

- Block $Utilization = \frac{\# Transactions in Block}{Block Capacity}$
- Target utilization ($Target = \frac{1}{2}$ in EIP-1559).

Instability of utilization-based rule [FMPS '21]

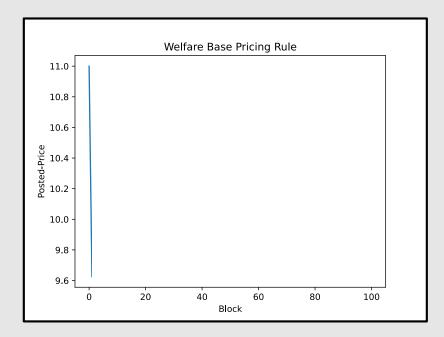
Suppose 50 slots for sale and 100 users that bid 10.

$$\begin{split} Price_{t+1} &= Price_t (1 + \alpha (Utilization - \frac{Target}{1})) \\ &= 1/2 \\ &= Price_t \left(1 \mp \frac{\alpha}{2}\right) \end{split}$$

Welfare-based pricing rule [FMPS '21]

$$Welfare(Block) = \sum_{i \in Block} v_i$$

$$Price_{t+1} = \alpha \frac{Welfare(Block)}{Capacity} + (1 - \alpha)Price_t$$

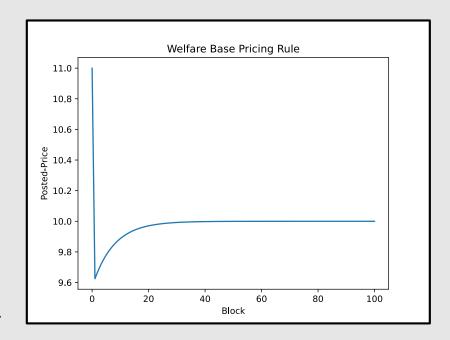

• Each transaction contributes $\frac{\alpha v_i}{Capacity}$ (where v_i is the bid of bidder i).

Example

- Consider 50 slots for sale and 100 users that bid 10.
- Case 1 ($Price_t^W > 10$):

$$\begin{aligned} \operatorname{Price}_{t+1}^{W} &= \alpha \frac{\operatorname{Welfare}(\operatorname{Block})}{\operatorname{Capacity}} + (1 - \alpha)\operatorname{Price}_{t}^{W} \\ &= (1 - \alpha)\operatorname{Price}_{t}^{W} \\ &< \operatorname{Price}_{t}^{W} \end{aligned}$$

• Then eventually $Price_{t+1}^W \leq 10$.



Example: Welfare-based

• Case 2 ($Price_t^W \leq 10$):

$$\begin{aligned} \operatorname{Price}_{t+1}^{W} &= \alpha \frac{\operatorname{Welfare}(\operatorname{Block})}{\operatorname{Capacity}} + (1 - \alpha)\operatorname{Price}_{t}^{W} \\ &= 10\alpha + (1 - \alpha)\operatorname{Price}_{t}^{W} \\ &\geq \operatorname{Price}_{t}^{W} \text{ and } \leq 10 \end{aligned}$$

- Thus, sequence of prices o monotone increasing.
- From monotone convergence, postedprice converge.

Why burn the posted-price?

- Without burning
 - If *value* < *price*, seller asks buyer to bid *price*
 - If buyer wins, buyer pays price and seller refunds price value
 - Considered undesirable, but it improves welfare
- With burning
 - Seller does not benefit from including buyers with value < price
 - Seller does benefit from deviating when value > price (e.g, impose a reserve price if they have Bayesian beliefs about values)
 - Example: over 90% of miners deviate from EIP-1559 by selling their block in the MEV-boost.

Opportunities for future work

- What is simplicity for multi-shot mechanisms? (e.g., no regret?)
- Al-assisted tooling (e.g., Ethereum gas tracker)
- In this talk slots are identical. In practice, slots are not identical

- Result in the posted-price being always smaller than 1st slot clearing price (congested)
- Is Welfare maximization a good objective? What about fairness (MEV)? [Ferreira, Parkes '23]

Agenda

- Lecture 1 (20 mins): TFMs for a single block
- Lecture 2 (20 mins): Dynamics TFMs
 - Break (30 mins)
- Lecture 3 (20 mins): Extensions to the TFM frameworks
- Panel discussion (30 mins):
 - Mallesh M. Pai (Rice University and Consensys)
 - Tim Roughgarden (Columbia University and a16z crypto)
 - Noam Nisan (Hebrew University of Jerusalem and Starkware)

